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1. INTRODUCTION AND PRELIMINARIES 

Let )1(A denote the class of functions of the form [12,13,14], 

)(zf  = n
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  ... (1.1) 

Which are analytic in the open unit disk { :U z z C  & |z| 

< 1}. Further, by S we shall denote the class of all functions in
)1(A  which are univalent inU . A function )(zf belonging 

to )1(A  is said to be starlike in U  if it satisfies 
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We denote by S∗ the subclass of )1(A  consisting of functions 

which are starlike inU . Also, a function )(zf belonging to 

)1(A is said to be convex in U if it satisfies 
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We denote by C the subclass of )1(A consisting of functions 

which are convex inU . A function )(zf  in )1(A  is said to 

be close-to-convex of order δ if there exists a function g (z) 
belonging to S* such that 
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For some δ (0 ≤ δ < 1), we denote by K (δ) the subclass of 
)1(A  consisting of functions which are close-to-convex of 

order δ in U. It is well known that C  S* K (0)  S 

Denote by ( )A p  the class of functions of the form 
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k
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Which are analytic in the punctured (open) disc { :U z z C   

and 1}.z   some properties of some subclasses of ( )A p were 

studied by Aouf et. al [10]. Denote by * ( , )S p   the class of 

starlike functions ( )f A p  of order (0 )p    satisfying 
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Preposition: A function ( )f A p  is said to be convex if 
*' ( , )zf S p   which is known as the Alexander function 

property i.e. f  ( , )C p   
*' ( , )zf S p  . 

Now let ( , )C p   be the class of convex functions ( )f A p of 

order (0 )p   such that
*' ( , )zf S p  . A function 

(1)f A is said to be in the class of  -uniformly convex 

functions of order , denoted by ( )UCV   [4, 5] if 
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and is said to be in a corresponding subclass of ( )UCV  , 

denoted by ( )pS  if 
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The class of uniformly convex and uniformly starlike 
functions has been extensively studied by Goodman[1,2], Ma 
and Minda[3]. In fact the class of uniformly  -starlike 

functions was introduced by Kanas and Wisniowski[9], and 
for which it can be generalised to ( ),pS   the class of 

uniformly  -starlike functions of order .  

If f of the form (1.5) and 
1
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functions in ( ),A p  then the Convolution of f and g  is 

denoted by *f g  and given by 
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Ruschweyh [7], using the convolution techniques, introduced 
and studied an important subclass of )1(A  the class of 

prestarlike function of order , which denoted by ( ).R   Thus 

(1)f A  is said to be prestarlike functions of order 

(0 1)    if ** ( )f S S   
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Ruschweyh derivative of order  in (1),A  which preserves 

the valences of the function is the convolution of two 

functions 
  11  z

z  and )(1 zf where )(1 zf  is analytic and 

univalent in (1),A  
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Define the family   ,,S consisting of function )(1 zf 
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is positive real number and 0.   

For suitable choices of   ,  and having ,p    we 
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Also denote by )( pN [6] the subclass of ( )A p  consisting of 

functions of the form 
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Now let us write 
)(),,;,(),,;,( pNpSpS N    i.e. the class of 

functions consisting of negative coefficients. 
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2. COEFFICIENT INEQUALITIES 

In this paper we will study the properties of unified 
presentation of functions f  )( pN  belongs to 

),,;,( pWN   i.e. a unification of subclass of multivalent 

starlike and subclass of multivalent convex kind of functions. 
First of all, we state the following result for the purpose of the 
study.  

Lemma 2.1: A function f defined by (1.8) is in the class 

),,;,( pS N  if and only if 
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Where  is positive real number, 0,   0kp ,
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 Proof: now from the definition of the ),,;,( pS N   we 
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Inequality holds.  

 Where 0,   0kp , 0p k    and kpkp    , 

k 1 

Conversely, 

If given inequality (2.1) hold then by proceeding 

above in reverse order then we get f 

),,;,( pS N  , proves the lemma. 
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