Coefficient Inequalities of Multivalent Analytic Function

Sunita Kumawat ${ }^{\text {a }}$, Naina Gupta ${ }^{\text {b }}$ and G. N. Purohit ${ }^{\text {c }}$
${ }^{a, b}$ Department ofApplied Mathematics, Amity School of Applied Sciences. Amity University Gurgaon
${ }^{\text {c Bansthali University Rajasthan, Rajasthan }}$
E-mail: ksunita86@gmail.com

Abstract

The main aim of the present paper is to obtain a new coefficient inequalities of p-valent functions by introducing and studying some new properties of unified class $W_{N}^{\lambda}(\phi, \psi ; \eta, \beta, p)$ involving the Ruschweyh Derivative and Hadamard Products.

Subject class (2010): Primary 26A33, Secondary 30C45
Keywords: | Convex | Starlike | p-valently Analytic Functions | Hadamard Product |Ruschweyh Derivative|

1. INTRODUCTION AND PRELIMINARIES

Let $A(1)$ denote the class of functions of the form [12,13,14],

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Which are analytic in the open unit $\operatorname{disk} U=\{z: z \in C \&|z|$ $<1\}$. Further, by \mathbf{S} we shall denote the class of all functions in $A(1)$ which are univalent in U. A function $f(z)$ belonging to $A(1)$ is said to be starlike in U if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \forall z \in U \tag{1.2}
\end{equation*}
$$

We denote by \mathbf{S}^{*} the subclass of $A(1)$ consisting of functions which are starlike in U. Also, a function $f(z)$ belonging to $A(1)$ is said to be convex in U if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \forall z \in U \tag{1.3}
\end{equation*}
$$

We denote by \mathbf{C} the subclass of $A(1)$ consisting of functions which are convex in U. A function $f(z)$ in $A(1)$ is said to be close-to-convex of order δ if there exists a function $g(z)$ belonging to \mathbf{S}^{*} such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g^{\prime}(z)}\right)>\delta \forall z \in U \tag{1.4}
\end{equation*}
$$

For some $\delta(0 \leq \delta<1)$, we denote by $\mathbf{K}(\delta)$ the subclass of $A(1)$ consisting of functions which are close-to-convex of order δ in U . It is well known that $\mathrm{C} \subset \mathbf{S}^{*} \subset \mathbf{K}(0) \subset \mathrm{S}$

Denote by $A(p)$ the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \tag{1.5}
\end{equation*}
$$

Which are analytic in the punctured (open) disc $U=\{z: z \in C$ and $|z|<1\}$. some properties of some subclasses of $A(p)$ were studied by Aouf et. al [10]. Denote by $S^{*}(p, \alpha)$ the class of starlike functions $f \in A(p)$ of order $\alpha(0 \leq \alpha<p)$ satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \forall z \in U \tag{1.6}
\end{equation*}
$$

Preposition: A function $f \in A(p)$ is said to be convex if $z f^{\prime} \in S^{*}(p, \alpha)$ which is known as the Alexander function property i.e. $f \in C(p, \alpha) \Leftrightarrow z f^{\prime} \in S^{*}(p, \alpha)$.
Now let $C(p, \alpha)$ be the class of convex functions $f \in A(p)$ of order $\alpha(0 \leq \alpha<p)$ such that ${ }^{z} f^{\prime} \in S^{*}(p, \alpha)$. A function $f \in A(1)$ is said to be in the class of ${ }^{\beta}$-uniformly convex functions of order α, denoted by $\beta-\operatorname{UCV}(\alpha)[4,5]$ if
$\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\} \geq \beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-1\right|, \forall z \in U$
and is said to be in a corresponding subclass of $\beta-\operatorname{UCV}(\alpha)$, denoted by $\beta-S_{p}(\alpha)$ if
$\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\} \geq \beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|$, where $-1 \leq \alpha \leq 1$ and $Z \in U$
The class of uniformly convex and uniformly starlike functions has been extensively studied by Goodman[1,2], Ma and Minda[3]. In fact the class of uniformly β-starlike functions was introduced by Kanas and Wisniowski[9], and for which it can be generalised to $\beta-S_{p}(\alpha)$, the class of uniformly β-starlike functions of order α.

If f of the form (1.5) and $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k}$ are two functions in $A(p)$, then the Convolution of f and g is denoted by $f^{*} g$ and given by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k} \tag{1.7}
\end{equation*}
$$

Ruschweyh [7], using the convolution techniques, introduced and studied an important subclass of $A(1)$ the class of prestarlike function of order α, which denoted by $R(\alpha)$. Thus $f \in A(1)$ is said to be prestarlike functions of order $\alpha(0 \leq \alpha<1)$ if $f^{*} S_{\alpha} \in S^{*}(\alpha)$

Where $\quad S_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}}=z+\sum_{n=2}^{\infty} c_{n}(\alpha) z^{n} \quad$ and $\left.c_{n}(\alpha)=\frac{\prod_{j=2}^{n}(j-2 \alpha)}{(n-1)!} \quad n \in N:=\{1,2,3, \ldots\}\right)$. we note that $R(0)=C(0)$ and $R\left(\frac{1}{2}\right)=S^{*}\left(\frac{1}{2}\right)$. Juneja et. al [8]

Ruschweyh derivative of order $\boldsymbol{\alpha}$ in $A(1)$, which preserves the valences of the function is the convolution of two functions $\frac{z}{(1-z)^{\alpha+1}}$ and $f_{1}(z)$ where $f_{1}(z)$ is analytic and univalent in $A(1)$,

Denoted by $D^{\alpha}\left(f_{1}(z)\right)$ and defined by

$$
D^{\alpha}\left(f_{1}(z)\right)=\frac{z}{(1-z)^{\alpha+1}} * f_{1}(z) \forall f_{1}(z) \in A(1) \text { and } \alpha \geq-1
$$

Now taking $D^{\alpha+1}\left(f_{1}(z)\right)=\phi(z)=z+\sum_{n=2}^{\infty} \eta_{n} z^{n}$
And $D^{\alpha}\left(f_{1}(z)\right)=\psi(z)=z+\sum_{n=2}^{\infty} \gamma_{n} z^{n} \quad \forall \quad f_{1}(z) \in A(1)$ and α ≥-1

Define the family $S(\phi, \psi, \delta)$ consisting of function $f_{1}(z) \in$ $A(1)$ so that
$\operatorname{Re}\left(\frac{f(z) * D^{\alpha+1}\left(f_{1}(z)\right)}{f(z) * D^{\alpha}\left(f_{1}(z)\right)}\right)>\delta \forall Z \in U$
Such that $f(z) * D^{\alpha}\left(f_{1}(z)\right)=f(z) * \psi(z) \neq 0, \quad \eta_{n} \geq 0$ and $\eta_{n} \geq \gamma_{n} \forall(n \geq 2)$.

We let $S(\phi, \psi ; \eta, \beta, p)[10]$ denote the set of all functions in $A(p)$ for which
$\operatorname{Re}\left\{1+\frac{1}{\eta}\left(\frac{f(z)^{*} \phi(z)}{f(z)^{*} \psi(z)}-p\right)\right\}>\beta\left|\frac{1}{\eta}\left(\frac{f(z)^{*} \phi(z)}{f(z)^{*} \psi(z)}-p\right)\right|$ where η is positive real number and $\beta \geq 0$.

For suitable choices of ϕ, ψ and having $\eta=p-\alpha$, we easily obtain the various subclasses of $A(p)$. For example S
$\left(\frac{z}{(1-z)^{2}}, \frac{z}{1-z} ; p-\alpha, 0\right)=S^{*}(p, \alpha), \quad S\left(\frac{z+z^{2}}{(1-z)^{3}}\right.$,
$\left.\frac{z}{(1-z)^{2}} ; p-\alpha, 0\right)=C(p, \alpha), \quad S\left(\frac{z+(1-2 \alpha) z^{2}}{(1-z)^{3-2 \alpha}}\right.$,
$\left.\frac{z}{(1-z)^{2-2 \alpha}} ; p-\alpha, 0\right)=R(p, \alpha), S\left(\frac{z}{(1-z)^{2}}, \frac{z}{1-z} ; p-\alpha, \beta\right)=$
$\beta-S_{p}(p, \alpha)$, and Furthermore, note that when $p=1$ we obtain $S\left(\frac{z}{(1-z)^{2}}, \frac{z}{1-z} ; 1-\alpha, 0\right)=S^{*}(\alpha)$,
$\mathrm{S}\left(\frac{z+z^{2}}{(1-z)^{3}}, \frac{z}{(1-z)^{2}} ; 1-\alpha, 0\right)=\quad C(\alpha), \quad \mathrm{S}\left(\frac{z+(1-2 \alpha) z^{2}}{(1-z)^{3-2 \alpha}}\right.$, $\left.\frac{Z}{(1-z)^{2-2 \alpha}} ; 1-\alpha, 0\right)=R(\alpha)$,
$\mathrm{S}\left(\frac{z}{(1-z)^{2}}, \frac{z}{1-z} ; 1-\alpha, \beta\right)=\beta-S_{p}(\alpha), \quad$ and $\quad \mathrm{S}\left(\frac{z+z^{2}}{(1-z)^{3}}\right.$,
$\left.\frac{z}{(1-z)^{2}} ; 1-\alpha, \beta\right)=\beta-\operatorname{UCV}(\alpha)$.
Also denote by $N(p)$ [6] the subclass of $A(p)$ consisting of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k} z^{p+k} . \tag{1.8}
\end{equation*}
$$

Now
let
us
write
$S_{N}(\phi, \psi ; \eta, \beta, p)=S(\phi, \psi ; \eta, \beta, p) \cap N(p)$ i.e. the class of functions consisting of negative coefficients.

2. COEFFICIENT INEQUALITIES

In this paper we will study the properties of unified presentation of functions $f \in N(p)$ belongs to $W_{N}^{\lambda}(\phi, \psi ; \eta, \beta, p)$ i.e. a unification of subclass of multivalent starlike and subclass of multivalent convex kind of functions. First of all, we state the following result for the purpose of the study.

Lemma 2.1: A function f defined by (1.8) is in the class
$S_{N}(\phi, \psi ; \eta, \beta, p)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(1-\beta) \eta_{p+k}-\{p(1-\beta)-\eta\} \gamma_{p+k}}{\eta-(1-\beta)(p-1)}\left|a_{p+k}\right| \leq 1 \tag{2.1}
\end{equation*}
$$

Where η is positive real number, $\beta \geq 0, \quad \eta_{p+k} \geq 0,{ }^{\gamma_{p+k}} \geq 0$ and $\eta_{p+k} \geq \gamma_{p+k}, \forall \mathrm{k} \geq 1$

Proof: now from the definition of the $S_{N}(\phi, \psi ; \eta, \beta, p)$ we have

If $f \in S_{N}(\phi, \psi ; \eta, \beta, p) \Rightarrow f \in N(p)$ and
$f \in S(\phi, \psi ; \eta, \beta, p)$

$$
\begin{equation*}
\Rightarrow f(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \tag{2.1.1}
\end{equation*}
$$

Also from $f \in S(\phi, \psi ; \eta, \beta, p)$

it satisfies the condition
$\operatorname{Re}\left\{1+\frac{1}{\eta}\left(\frac{f(z)^{*} \phi(z)}{f(z)^{*} \psi^{*}(z)}-p\right)\right\}>\beta\left|\frac{1}{\eta}\left(\frac{f(z)^{*} \phi(z)}{f(z)^{*} \psi(z)}-p\right)\right|$
Where η is positive real number and $\beta \geq 0$.
Where
$\phi(\mathrm{z})=D^{\alpha+1}\left(f_{p}(\mathrm{z})\right)=\frac{\mathrm{z}^{p}}{\left(1-\mathrm{z}^{p}\right)^{\alpha+2}} * f_{p}(\mathrm{z})=\mathrm{z}^{p}+\sum_{k=1}^{\infty} \eta_{k+p} z^{k+p}$

And
$\psi(z)=D^{\alpha}\left(f_{p}(z)\right)=\frac{z^{p}}{(1-z)^{\alpha+1}} * f_{p}(z)=z^{p}+\sum_{k=1}^{\infty} \gamma_{k+p} z^{k+p} \quad \forall$
$f_{p}(z) \in A(p)$
s.t $\eta_{p+k} \geq 0, \gamma_{p+k} \geq 0$ and $\eta_{p+k} \geq \gamma_{p+k}, \forall \mathrm{k} \geq 1$

$$
\beta\left|\frac{1}{\eta}\left(\frac{f(z)^{*} \phi(z)}{f(z)^{*} \psi(z)}-p\right)\right|-\operatorname{Re}\left\{\frac{1}{\eta}\left(\frac{f(z)^{*} \phi(z)}{f(z)^{*} \psi(z)}-p\right)\right\}<1
$$

Now we know $\operatorname{Re}(x) \leq|x|$ and $|x-y| \geq|x|-|y|$ so
$\frac{\beta}{\eta}$
$\left.\left.\left|\left(\frac{z^{p}-\sum_{k=1}^{\infty} a_{p+k} \eta_{p+k} z^{p+k}}{z^{p}-\sum_{k=1}^{\infty} a_{p+k} \gamma_{p+k} z^{p+k}}-p\right)\right|-\left\{\frac{1}{\eta}\right)\left(\frac{z^{p}-\sum_{k=1}^{\infty} a_{p+k} \eta_{p+k} z^{p+k}}{z^{p}-\sum_{k=1}^{\infty} a_{p+k} \gamma_{p+k} z^{p+K}}-p\right) \right\rvert\,\right\} \leq 1$
Now $f(z), \phi(z) \& \psi(z)$ are analytic in unit disk ,so

$$
\frac{\beta}{\eta}\left(\frac{1-\sum_{k=1}^{\infty}\left|a_{p+k}\right| \eta_{p+k}}{1-\sum_{k=1}^{\infty}\left|a_{p+k}\right| \gamma_{p+k}}-p\right)-\left\{\frac{1}{\eta}\left(\frac{1-\sum_{k=1}^{\infty}\left|a_{p+k}\right| \eta_{p+k}}{1-\sum_{k=1}^{\infty}\left|a_{p+k}\right| \gamma_{p+k}}-p\right)\right\} \leq 1
$$

$\left(\frac{\beta}{\eta}-\frac{1}{\eta}\right)\left(\frac{1-\sum_{k=1}^{\infty}\left|a_{p+k}\right| \eta_{p+k}}{1-\sum_{k=1}^{\infty}\left|a_{p+k}\right| \gamma_{p+k}}-p\right) \leq 1$ Since $\beta \geq 0$,
$\eta_{p+k} \geq 0, \gamma_{p+k} \geq 0$
$(\beta-1)\left(1-\sum_{k=1}^{\infty} a_{p+k} \mid \eta_{p+k}-p\left(1-\sum_{k=1}^{\infty} a_{p+k} \mid \gamma_{p+k}\right)\right) \leq \eta\left(1-\sum_{k=1}^{\infty} a_{p+k} \mid \gamma_{p+k}\right)$
$\sum_{k=1}^{\infty} \frac{(1-\beta) \eta_{p+k}-\{p(1-\beta)-\eta\} \gamma_{p+k}}{\eta-(1-\beta)(p-1)}\left|a_{p+k}\right| \leq 1$
Inequality holds.
Where $\beta \geq 0, \quad \eta_{p+k} \geq 0, \gamma_{p+k} \geq 0$ and $\eta_{p+k} \geq \gamma_{p+k}, \forall$
$\mathrm{k} \geq 1$
Conversely,
If given inequality (2.1) hold then by proceeding above in reverse order then we get $f \in$ $S_{N}(\phi, \psi ; \eta, \beta, p)$, proves the lemma.

3. ACKNOWLEDGMENTS

We thank the anonymous referees, whose suggestions helped to improve the presentation of the paper.

REFERENCES

[1] W. Goodman, "On uniformly convex functions", Ann. Polon. Math., 56 (1991) pp. 87-92.
[2] W. Goodman, "On uniformly convex functions and starlike functions",J. Math. Anal. \& Appl., 155 (1991), pp. 364-370
[3] W. Ma and D. Minda, "Uniformly convex functions", Ann. Polon. Math., 57 (1992) pp. 165-175.
[4] F. Rønning "Geometric properties of subclasses of starlike functions", Proc. Amer. Math. Soc., 118 (1993)pp. 189-196.
[5] F. Rønning, "On Certain p-valently Analytic Functions Involving Hadamard Products" ,Ann. Polon. Math., 60 (1995), pp. 289-297.
[6] H. Silverman, "Univalent Functions with Negative Coefficients" Proc. Amer. Math. Soc., 51 (1975) pp. 109-116.
[7] S. Ruschweyh, Comm. Math. Helv., 52 (1977) pp. 497-509.
[8] Juneja, T. R. Reddy and M. L. Mogra, Soochow J. Math., 11 (1985), pp. 69-81.
[9] S. Kanas and A. Wisniowski, On Certain p-valently Analytic Functions Involving Hadamard Products ev. Roumanie Math. Pures Appl. 45 (2000) 647-657.
[10] M. K. Aouf, M. Hossen and H. M. Srivastava, Appl. Math. Comp., 39 (2000) pp.39-48
[11] Duren P.L., "Univalent function", springer -verlag.,(1983), pp. 27-74.
[12] Prajapat J.K. and Agarwal Ritu,"Some Results on Certain Class of Analytic Functions Based on Differential Subordination" , Journal of Korean mathematical Society Volume :50/1-10/ 2013
[13] S. Ponnusamy, S. K. Sahoo and H. Yanagihara, Radius of convexity of partial sums of functions in the close-to-convex family, Nonlinear Analytic. 95 (2014) 218-228.
[14] Árpád baricz, róbert szász ", the radius of convexity of normalized bessel functions" a nalysis Mathematica 41(3) (2015) 141-151.

